
A Guide to Using The Cryptosoft SBOM Creation Utility

The OWASP ® Dependency-Track offering requires a CycloneDX formatted SBOM
(Software Bill-Of-Materials) as input to its capabilities. You can create this SBOM yourself
or Cryptosoft provides a utility to help create one for you.

We provide GitHub Actions to create the SBOM or services to create one for your custom
toolchain (we have provided an example for Jenkins).

Copyright to OWASP ® 1

1. Using Cryptosoft Github Actions in your Github Repository

We simplify that by making available GitHub Actions for inclusion into your Github
workflow. Here is the link to our Actions in the Github Marketplace
(https://github.com/marketplace?type=&verification=&query=cryptosoft+).

We have Four GitHub Actions: Two for uploading a GitHub repository’s SBOM to the
Dependency-Track and two actions for aggregating a GitHub repository’s SBOM with an
existing project in Dependency-Track

● CryptosoftInc/Dependency-Track-Javascript@1.0.0

● CryptosoftInc/Dependency-Track@1.0.0

● CryptosoftInc/Aggregate-Sbom-Javascript@1.0.0

● CryptosoftInc/Aggregate-Sbom@1.0.0

Languages Supported for - CryptosoftInc/Dependency-Track-Javascript@1.0.0

● All Javascript projects

Languages Supported for - CryptosoftInc/Dependency-Track@1.0.0 are given
below:

Language/Platform Package format Transitive
dependencies

java maven (pom.xml [1]), gradle
(build.gradle, .kts), scala (sbt),
bazel

Yes unless pom.xml is
manually parsed due
to unavailability of
maven or errors

php composer.lock Yes

python pyproject.toml, setup.py,
requirements.txt [2], Pipfile.lock,
poetry.lock, bdist_wheel, .whl,
.egg-info
(Tool is under enhancement for
poetry.lock file , for poetry.lock
click here to generate SBOM and
send to dependency-track)

Yes using the
automatic pip
install/freeze. When
disabled, only with
Pipfile.lock and
poetry.lock

go binary, go.mod, go.sum,
Gopkg.lock

Yes except binary

ruby Gemfile.lock, gemspec Only for Gemfile.lock

rust binary, Cargo.toml, Cargo.lock Only for Cargo.lock

2

https://github.com/marketplace?type=&verification=&query=cryptosoft+
https://github.com/marketplace/actions/cryptosoftinc-sbom?version=1.0.0
https://github.com/marketplace/actions/cryptosoft-sbom-dt
https://github.com/marketplace/actions/cryptosoftinc-aggregated-sbom
https://github.com/marketplace/actions/cryptosoftinc-aggregated-sbom-dependency-track

.Net .csproj, packages.config,
project.assets.json [3],
packages.lock.json, .nupkg

Only for
project.assets.json,
packages.lock.json

dart pubspec.lock, pubspec.yaml Only for pubspec.lock

haskell cabal.project.freeze Yes

c/c++ conan.lock, conanfile.txt Yes only for
conan.lock

clojure Clojure CLI (deps.edn), Leiningen
(project.clj)

Yes unless the files are
parsed manually due
to lack of clojure cli or
leiningen command

For more information about the supported languages, visit this link
https://github.com/CycloneDX/cdxgen

How to implement our Action in your Repository

Pre-requisites:

1. Make sure the dependency file exists in the root directory of your GitHub repository.

A dependency file is the file that lists the external libraries, packages, or modules that
a project depends on to function properly. It specifies the specific versions or ranges
of versions that are compatible with the project.
Example:

JavaScript: package.json (used by npm, Yarn)
Python: requirements.txt (used by pip)
Ruby: Gemfile (used by Bundler)
Java: pom.xml (used by Apache Maven)
PHP: composer.json (used by Composer)
.NET: packages.config (used by NuGet)
Go: go.mod (used by Go Modules)

2. Create an Administrator API Key from the Dependency-Track UI.

The Administrator API key is used to authenticate the user to access the endpoint. It
serves as a unique identifier or token that allows applications to authenticate
themselves and gain access to specific resources.

3

https://github.com/CycloneDX/cdxgen

Steps to Create the Administrator API key:

1. Once you have successfully subscribed to the Cryptosoft OWASP Dependency-Track

service you will receive two URLs, one is for your Dependency-Track instance and

the second is a ‘backend url’ for use in creating your SBOM with this utility.

2. Enter the Dependency-Track instance URL in your browser.

3. Login using the default credentials.

Username – admin

Password – admin

4. You will be asked to reset the password, please reset the password and login again to

the Dependency-Track website.

4

5. After login, In the left sidebar, click the “Administration” link

6. In the Administration page, click “Access Management”

5

7. Click on “Teams” under Access Management

8. Click on “Administrators” under the Team Name

6

9. Click on the + icon under API Keys

10. A new API key will now be generated

7

Steps to run our Action:

1. Create a workflow in the root of your GitHub repository as shown.

.github/workflows/<filename>.yml

2. Copy/paste our GitHub Action code snippet in the created workflow yml file.

name: Your-Workflow-Name
on: push
jobs:
myJob:
runs-on: ubuntu-latest
steps:
- name:Cryptosoft-SBOM-generator
id: Cryptosoft-SBOM-generator
uses: CryptosoftInc/Dependency-Track-Javascript@1.0.0
with:
dt-url: <your dt url>
api-key: ${{ secrets.apiKey }}
project-name: <your project name>
project-version: <your project version >

Provide the inputs as mentioned:

project-name: Enter your project name

project-version: Enter the project version

dt-url – Enter your Dependency-Track “backend URL”

api-key – Place your API Key in the GitHub secrets and pass the secrets ref or
directly pass the API Key in inputs

8

Example:

3. Click on the “Commit changes” button.

9

4. Click on the “Commit changes” button in the dialog box

5. After clicking the “Commit changes” button, the Action will be run, the SBOM will
be generated for the GitHub repository and it will be uploaded to the provided
Dependency-Track backend url.

6. You can see your GitHub Action status by clicking on “Actions” tab as shown below:

7. Enter the Dependency-Track instance URL in the browser.

8. Login to the website

10

9. Go to the Projects

10. Click on the created project name.

11. Click on components in the navigation bar to view components of the project.

11

12. Click on “Audit Vulnerabilities” in the navigation bar to view the vulnerabilities.

12

2. Creating multiple repositories within a single parent project
In the previous steps we learned how to create an SBOM for a project using our GitHub
Actions. The following steps will guide you on how to create SBOMs for multiple
repositories within a single Dependency-Track parent project.

The first step is to create the parent project for the repositories.

2.1 Creating the parent project:

i) Login to the Dependency-Track using your credentials. If you haven’t set up the
Administrator API key yet, Please follow the steps in the Steps to Create the Administrator
API key section.

ii) Click the “projects” link in the sidebar

13

iii) Now the Projects page will be displayed. On the Projects page, Click the “Create Project”

button

14

iv) A “Create Project” popup will be displayed. Fill in the project details - project name,

project version and classifier. Then click the “Create” button to create a new project.

v) Now that we have created a parent project, we can proceed to create multiple repositories
below it.

15

2.2. Creating multiple repositories within a parent project
1. After creating a parent project, follow the steps in Steps to run our Action, to create a

workflow.

2. Copy/paste our GitHub Action code snippet in the created workflow yml file.

name: Your-Workflow-Name
on: push
jobs:
myJob:
runs-on: ubuntu-latest
steps:
- name:Cryptosoft-SBOM-generator
id: Cryptosoft-SBOM-generator
uses: CryptosoftInc/Dependency-Track-Javascript@1.0.0
with:
dt-url: <your dt url>
api-key: ${{ secrets.apiKey }}
project-name: <your project name>
project-version: <your project version >
parent-name: <your parent project name>
parent-version: <your parent project version >

Provide the inputs as mentioned:

parent-name: Enter your parent project name

parent-version: Enter the parent project version

project-name: Enter your project name

project-version: Enter the project version

dt-url: Enter your Dependency-Track “backend URL”

api-key: Place your API Key in the GitHub secrets and pass the secrets ref or directly
pass the API Key in inputs

16

https://github.com/marketplace/actions/cryptosoftinc-sbom?version=1.0.0

Example

3. Follow the steps in Steps to run our Action to execute the action and view the project

in Dependency-Track

4. Login to the Dependency-Track UI and navigate to the “Projects” page, and you will

see the new project has been created under the designated parent project.

17

3. Creating an SBOM from multiple repositories under a single
project
The upcoming steps will guide you in combining a GitHub repository’s SBOM with an
existing Dependency-Track project to aggregate the SBOMs.

By using this method, we can upload the SBOMs of multiple repositories to a single project,
which results in obtaining the aggregated SBOM within the single project.

For Javascript projects, use CryptosoftInc/Aggregate-Sbom-Javascript@1.0.0

For non-Javascript projects, use CryptosoftInc/Aggregate-Sbom@1.0.0

These actions will enable you to aggregate the SBOMs accordingly.

1. Follow the steps in Steps to run our Action, to create a workflow.

2. Copy/paste our GitHub Action code snippet in the created workflow yml file.

name: Your-Workflow-Name
on: push
jobs:
myJob:
runs-on: ubuntu-latest
steps:
- name:Cryptosoft-SBOM-Dependency-Track
id: Cryptosoft-SBOM-Dependency-Track
uses: CryptosoftInc/Aggregate-Sbom@1.0.0
with:
dt-url: <your dt url>
api-key: ${{ secrets.apiKey }}
project-name: <your project name>
project-version: <your project version >

Provide the inputs as mentioned:

project-name: Enter your project name

project-version: Enter the project version

dt-url: Enter your Dependency-Track “backend URL”

api-key: Place your API Key in the GitHub secrets and pass the secrets ref or directly
pass the API Key in inputs

18

https://github.com/marketplace/actions/cryptosoftinc-aggregated-sbom
https://github.com/marketplace/actions/cryptosoftinc-aggregated-sbom

Example

5. Follow the steps in Steps to run our Action to execute the action and view the project

in Dependency-Track.

6. After logging into the Dependency-Track UI, navigate to the “Projects” page. You

will be able to see the new project if it has been successfully created. In case the

project already exists, you will find the aggregated SBOMs associated with that

project.

19

4. Using a custom toolchain
The process consists of two steps: SBOM generation and uploading it to Dependency-Track.

For SBOM generation, you have various options available depending on your project
requirements. You can utilize tools like CycloneDX Tool Center, Syft Tool, or Microsoft
SBOM Tool. These tools enable you to generate an SBOM tailored to your specific project.
We have provided later a sample for Jenkins which was created using the cdxgen tool.

Moving on to the second step, you need to invoke the Dependency-Track API with the
necessary inputs to successfully upload the SBOM. To accomplish this, you can employ a
sample curl command as follows:

curl -k -X POST "{Dependency-Track-backend-url}/api/v1/bom" \

-H "Content-Type:multipart/form-data" \

-H "X-Api-Key:${<DT-Api-key>}" \

-F "autoCreate=true" \

-F "projectName=<your-project-name>" \

-F "projectVersion=<your-project-version>" \

-F "bom=@<Generated-SBOM-file>"

**Generated SBOM file supported formats .xml and .json

20

https://cyclonedx.org/tool-center/
https://github.com/anchore/syft
https://github.com/microsoft/sbom-tool
https://github.com/microsoft/sbom-tool
https://github.com/CycloneDX/cdxgen
https://docs.dependencytrack.org/usage/cicd/

GENERAL TEMPLATE FOR USING THE SBOM UTILITY FOR JENKINS:

In the explanation below we are demonstrating how to generate the SBOM using Jenkins and
upload it to Dependency-Track. We are using the cdxgen tool for the SBOM generation.

Jenkins Setup:

● Install Git plugin
● Go to the Jenkins Dashboard→Manage Jenkins→Tools where we can see the Git

plugin.

● Click on Add NodeJs and provide the name as “git” and check the Install
automatically option with the latest version.

● Click on Apply with the above setting and then Click on Save.
● Install NodeJS plugin
● Go to the Jenkins Dashboard→Manage Jenkins→Tools where we can see the

NodeJs plugin.
● Click on “Add NodeJs” and provide the name as “node” and check the Install

automatically option with the latest version.
● Click on “Apply” with the above setting and then Click on Save.

21

https://github.com/CycloneDX/cdxgen

● The Jenkinsfile pipeline below will support NodeJS, ReactJs, Angular.
● Make sure the Jenkinsfile exists in the root directory of your Github repository.

pipeline {
agent any
tools {

nodejs "node" STEP 1
}
stages {

stage('Checkout') {
steps {

checkout scm
}

}
stage('Install Dependencies') {

steps {

sh 'npm install' STEP 2
}

}
stage('Install SBOM tool') {

steps {

sh 'npm install -g @cyclonedx/cdxgen@8.6.0' STEP 3'
}

}
stage('Generate SBOM') {

steps {
sh 'export FETCH_LICENSE=true && cdxgen -r -o bom.json'
script {

def sbom = readFile('bom.json')

echo "Generated SBOM:\n$sbom" STEP 4
}

}
}
stage('Upload SBOM to Dependency-Track') {

steps {
withCredentials([string(credentialsId: '<Your apikey name>', variable:

'X_API_KEY')]) {
sh """
curl -k -X POST "https://<Your dependency-track backend

url>/api/v1/bom" \
-H "Content-Type:multipart/form-data" \
-H "X-Api-Key:${X_API_KEY}" \
-F "autoCreate=true" \

-F "projectName=<your project name>"\ STEP 5
-F "projectVersion=<Your project version>" \
-F "bom=@bom.json"
""" }

}
}

}
}

22

For other programming languages use project specific commands in STEP 2 to install project
dependencies.
Ex: Golang- “go mod why” , Python - “pip install” etc. as shown below:

stage('Install Dependencies') {
steps {

sh 'go mod why' STEP 2
}

}

● Once the changes are committed by adding the Jenkinsfile to your GitHub repository,
we need to connect the GitHub repository to Jenkins and create a secret for storing the
Dependency-Track APIKEY.

23

Generation of the Dependency-Track APIKEY as a Secret in Jenkins

● In the Jenkins pipeline we are passing the APIKEY of Dependency-Track as secret
which needs to be added in the Credentials.

● Go to the Jenkins Dashboard→Manage Jenkins→Credentials→System→Global
credentials (unrestricted) and click on Add Credentials.

● Now select the kinds as Secret Text and paste the APIKEY in the Secret option and
provide a name in the ID

● Click on “Create”.
● This Secret will be used in the Jenkins pipeline for pushing the SBOM to the

Dependency-Track backend.

24

● Create the Jenkins pipeline project and then select the
○ Definition — Pipeline script from SCM
○ SCM— Git
○ Repository URL — GH repository for SBOM

○ Credentials — Add GitHub username and password as secret

● Once the GitHub username and password are set as secret then we can use the name
of the secret or ID which has been generated during the secret creation for connecting
the GitHub repository.

25

● Mention the branch name and the Jenkinsfile for creating the SBOM

● Click on Apply
● Once the Jenkins Project is created then Click on the project and then click on the

Build Now option on the left sidebar.

● Then we will see the build has been started which will run the Steps from the
Jenkinsfile.

● Once the build process is completed successfully we can check the SBOM project
name has been pushed to Dependency-Track.

● Go to the Dependency-Track frontend url and you will see the Project has been
created with the version number.

26

● Failure/Error Case

● If the Jenkins server is running in kubernetes and the build steps have been killed or
terminated with any memory error then we need to add the snippet below to the
initiating pipeline in your Jenkinsfile:

pipeline {
agent {

kubernetes {
cloud 'kubernetes'
yaml """

apiVersion: v1
kind: Pod
spec:
containers:
- name: jnlp
image: jenkins/inbound-agent:3107.v665000b_51092-15
resources:
limits:
cpu: '1'
memory: '2Gi'

requests:
cpu: '900m'
memory: '1Gi'

tty: true
"""

}
// Your Rest pipeline steps

}

}

27

GITHUB WORKFLOW TO GENERATE SBOM FOR PYTHON WITH POETRY.LOCK

For Python projects with a poetry.lock dependency file, create a workflow in the root of your
GitHub repository as shown in this step. Use the code snippet below to generate the SBOM
and upload it to Dependency-Track.

name: test-actions
on:
push:

jobs:
myJob:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Setup Python
uses: actions/setup-python@v3.1.4

- name: Install tool
run: pip install cyclonedx-bom

- name: Generate BOM
run: |

cyclonedx-py --poetry --format xml -o sbom.xml

- name: Submit SBOM
run: |
curl -k -X POST "<Your DT URL>/api/v1/bom" \
-H "Content-Type: multipart/form-data" \
-H "X-Api-Key:<Your API_KEY>" \
-F "autoCreate=true" \
-F "projectName=<Your project Name>" \
-F "projectVersion=<Your project version>" \
-F "bom=@sbom.xml"

* Substitute your Dependency-Track url , api-key , project name and project version at the
highlighted place.

28

END

29

